Use of the *Caenorhabditis elegans* as an alternative model for evaluating the allergen potential of skin sensitizers

Camila Braggion, MSc
PhD student – LIMAUA - Laboratory of Immunotherapeutic and Alternative Methods to the Use of Animals
Advisor: Prof Jane Zveiter de Moraes
Animal testing for the production of cosmetic has been banned;

Research about efficient alternative methods;

skin sensitization;

ACD (allergic contact dermatitis) – type IV hypersensitivity reaction, induced by repeated contact with sensitizers.

Adverse Outcome Pathway for skin sensitizers

Adverse Outcome Pathway for skin sensitizers

Adverse Outcome Pathway

Key event 2

Induction of cytoprotective genes;

Keap1-Nrf2-ARE pathway

Adverse Outcome Pathway

Key event 2

Induction of cytoprotective genes;

FOXO pathway

• **ORTHOLOGS**: genes in different species that evolved from a common ancestral gene by speciation. Retain the same function in the course of evolution.

- **Mammalian**
 - Keap1-**Nrf2-ARE**
 - JNK-**FOXO**

- **C. elegans**
 - p38 MAPK - **SKN1-ARE**
 - JNK1(MAPK) - **DAF16**

• Both pathways are activated in response to oxidative stress.
Genetic modification in *C. elegans*
<table>
<thead>
<tr>
<th>STRAINS</th>
<th>GENETIC MODIFICATION</th>
<th>ORTHOLOG C.ELEGANS</th>
<th>ORTHOLOG MAMMALIAN</th>
<th>MAMMALIAN SIGNALING PATHWAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF1553-psod3::GFP</td>
<td>Addition of GFP molecule in the sod3 promoter</td>
<td>DAF-16 – active sod3</td>
<td>FOXO (Forkhead box)</td>
<td>JNK-FOXO</td>
</tr>
<tr>
<td>CL2166-pgst4::GFP</td>
<td>Addition of GFP molecule in the gst4 promoter</td>
<td>SKN-1 – active gst4</td>
<td>Nrf2 (nuclear factor erythroid 2-related factor 2)</td>
<td>Keap1-Nrf2-ARE</td>
</tr>
<tr>
<td>N2 BRISTOL</td>
<td>Wildtype</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Cell culture x *C. elegans* models

- **Simple Cell Culture model**
 - Very expensive;
 - Cellular Monolayer;
 - Contamination;
 - Loss of phenotypic characteristics;

- **C. elegans model**
 - Low cost;
 - Easy manipulation;
 - Innate immune system;
 - Collagenous cuticle and 4 layers epidermis;
 - Sequenced genome in database;

Systemic Model

- **Skin sensitization involves several layers and cells !!!!!**
WHY C. ELEGANS IS AN ALTERNATIVE MODEL?

- **Sentience** is the ability of beings to feel sensations and feelings consciously;
- Be sentient means being conscious
- Be sentient is able to be affected positively or negatively

C. elegans IS NOT SENTIENCE

C. elegans model:

- Nematode – 1mm
- Feeds *E.coli*
- Lives in petri dish
- High reproduction rate (~200 eggs)
- Lives 28-30 days
- Transparent (fluorescent)
- Whole genome was sequenced

Objective:

The present work aims to verify whether the nematode *C. elegans* can help in the evaluation of allergenicity potential.
Growth curve

Sodium Hypochlorite 5%
Sodium Hydroxide 2,5M

Lysing solution

Culture with a large number of gravid hermaphrodites

Only eggs

Counting Worms
- Larvae – Young Adults - Adults
Growth curve

CF1553/DAF-16

CL2166/SKN-1

N2 Bristol

- Adults
- Young Adults
- Larvae

Day 01 Day 02 Day 03 Day 04

Day 01 Day 02 Day 03 Day 04

Day 01 Day 02 Day 03 Day 04

Chemicals used in the present study

<table>
<thead>
<tr>
<th>CHEMICAL</th>
<th>Classification LLNA</th>
<th>In vitro classification</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO (Dimethyl sulfoxide)</td>
<td>Vehicle</td>
<td>Vehicle</td>
<td>Solvent</td>
</tr>
<tr>
<td>DNCB (2,4-Dinitrochlorobenzene)</td>
<td>S (extreme)</td>
<td>S</td>
<td>Solvent</td>
</tr>
<tr>
<td>PFA (Formaldehyde)</td>
<td>S (strong)</td>
<td>S</td>
<td>Preservative</td>
</tr>
<tr>
<td>2-MBT (2-Mercaptobenzothiazole)</td>
<td>S (moderate)</td>
<td>NS</td>
<td>Preservative</td>
</tr>
<tr>
<td>EU (Eugenol)</td>
<td>S (weak)</td>
<td>NS</td>
<td>Preservative</td>
</tr>
<tr>
<td>PROP (Isopropanol)</td>
<td>NS</td>
<td>NS</td>
<td>Solvent</td>
</tr>
<tr>
<td>LPS (Lipopolysaccharide)</td>
<td>Control +</td>
<td>Control +</td>
<td></td>
</tr>
</tbody>
</table>

Chemicals used in the present study
Determination of Letal Concentration 50% - LC50

- N=10-12 worms

50 µl - M9 medium
50 µl – Chemicals solution

DEAD WORMS AFTER 24H WERE COUNTED
<table>
<thead>
<tr>
<th>CHEMICAL</th>
<th>N2 Value</th>
<th>CL2166 Value</th>
<th>CF1553 Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO ((\text{Dimethyl sulfoxide}))</td>
<td>1% (R^2 = 0.9645)</td>
<td>1% (R^2 = 0.9765)</td>
<td>1% (R^2 = 0.9432)</td>
</tr>
<tr>
<td>DNBC ((2,4-\text{Dinitrochlorobenzene}))</td>
<td>1.2 mM (R^2 = 0.9984)</td>
<td>2.5 mM (R^2 = 0.9652)</td>
<td>2.5 mM (R^2 = 0.9652)</td>
</tr>
<tr>
<td>PFA ((\text{Formaldehyde}))</td>
<td>20 mM (R^2 = 0.9801)</td>
<td>40 mM (R^2 = 0.9797)</td>
<td>20 mM (R^2 = 0.9801)</td>
</tr>
<tr>
<td>2-MBT ((2-\text{Mercaptobenzothiazole}))</td>
<td>5.0 mM (R^2 = 0.9604)</td>
<td>2.5 mM (R^2 = 0.9524)</td>
<td>2.5 mM (R^2 = 0.9524)</td>
</tr>
<tr>
<td>EU ((\text{Eugenol}))</td>
<td>0.5 mM (R^2 = 0.9829)</td>
<td>0.5 mM (R^2 = 0.9829)</td>
<td>1.25 mM (R^2 = 0.9829)</td>
</tr>
<tr>
<td>PROP ((\text{Isopropanol}))</td>
<td>170 mM (R^2 = 0.9765)</td>
<td>170 mM (R^2 = 0.8738)</td>
<td>170 mM (R^2 = 0.8738)</td>
</tr>
<tr>
<td>LPS ((\text{Lipopolysaccharide}))</td>
<td>1.0 µg/ml (R^2 = 0.9383)</td>
<td>0.5 µg/ml (R^2 = 0.9289)</td>
<td>1.0 µg/ml (R^2 = 0.9383)</td>
</tr>
</tbody>
</table>
RACIONALE

1. **Most allergenic potential**
2. Higher activation of signaling pathways
3. Increased worms fluorescence intensity

C. elegans strains used:
- CF1553 – PoD3::GFP – DAF16
- CL2166 – PoGST4::GFP – SKN1
Selection of the exposure time

- 4h - short
- 10h - moderate
- 24h - long

50 µl - M9 medium
50 µl – Chemical solution
Selection of the exposure time

4h - SHORT EXPOSURE

10h - MODERATE EXPOSURE

N=10-15 worms
Selection of the exposure time

24h - LONG EXPOSURE

N=10-15 worms
Analysis of the expression of the JNK-DAF16 signaling pathway - CF1553
Analysis of the expression of the p38MAPK-SKN-1 signaling pathway - CL2166
Fluorescence intensity analysis by the *ImageJ* software

- CF1553
 - JNK-DAF16
 - JNK-FOXO

- CL2166
 - p38MAPK-SKN1
 - Keap1-Nrf2-ARE

* N=15-20 worms
CONCLUSIONS and PROSPECTIVES

- The CL2166 strain, which emit fluorescence when the Keap1-Nrf2-ARE signaling pathway is activated, showed promising potential to predict the allergenicity.

- The CF1553 strain, which emit fluorescence when the JNK-FOXO signaling pathway is activated, was not able to predict the allergen potential of chemicals using the fluorescence emission test;

- These results must be checked by other tests, such as Real Time-PCR, as well as a greater number of chemicals need to be tested to confirm the potential of the approach.
Acknowledgment

- LIMAUA
- Prof. Jane Zveiter de Moraes
- Bárbara Hamaguchi
- Gabriela Soares
- Leticia Teixeira
- Luciana Righi
- Marina Leonardo
- Renata Yamada
- Dr. Rodrigo Aguiar
- MSc. Tábata de Almeida
- Dra. Carolina Parise

- LaBE - UNICAMP
- Prof. Marcelo Alves Mori
- Guilherme Tonon
- Jéssica Branquinho

Financial Support